&
50 Machine Learning
Algorithms — Cheatsheet

I Blueprints of Intelligence — 50 ML Algorithms decoded.

How to Use?
Each pattern includes:
e When to use (practical scenario)
» Coreidea (intuition)
» Complexity (time/space, rough)
e Python hint (minimal example)

o Pitfalls / Variations

A. @ Supervised Learning (1-20)

1. Linear Regression
@ When: Predict continuous numeric values from features.
. ldea: Fit line/plane by minimizing mean squared error.
(> Complexity: O(n-d®) closed form; O(n-d-it) gradient descent.
<, Python:

from sklearn.linear_model import LinearRegression
model = LinearRegression().fit(X, y

I Pitfalls: Sensitive to multicollinearity & outliers.

£ Variations: Weighted regression, polynomial regression.

50 Machine Learning Algorithms — Cheatsheet

2. Logistic Regression
@ When: Binary classification (extendable to multi-class).
. ldea: Apply sigmoid to linear score; optimize log-likelihood.
) Complexity: O(n-d-it).
<, Python:

from sklearn.linear_model import LogisticRegression
clf = LogisticRegression().fit(X, y

I Pitfalls: Assumes linear decision boundary.

4 Variations: Softmax regression for multi-class.

3. Ridge Regression (L2)
@ When: Regression with multicollinearity; need regularization.
. ldea: Penalize large coefficients with L2 norm.

<, Python:

from sklearn.linear_model import Ridge
model = Ridge(alpha=1.0) fit(X, y

I Pitfalls: Doesn't perform feature selection.

£ Variations: Logistic ridge regression.

4. Lasso Regression (L1)
@ When: Regression with feature selection.
. Idea: L1 penalty shrinks some coefficients to zero.

<, Python:

from sklearn.linear_model import Lasso
model = Lassol(alpha=0.1) fit(X, y

I Pitfalls: Unstable when features are correlated.

£ Variations: Sparse models in high dimensions.

50 Machine Learning Algorithms — Cheatsheet

5. Elastic Net

@ When: Need both shrinkage and feature selection.
. ldea: Weighted L1 + L2 penalties.

<, Python:

from sklearn.linear_model import ElasticNet
model = ElasticNet(l1_ratio=0.5) fit(X, y

I Pitfalls: Extra hyperparameter (I1_ratio).

4 Variations: LARS solver for speed.

6. K-Nearest Neighbors (KNN)
@ When: Simple classification/regression baseline.

. ldea: Predict by majority (classification) or mean (regression) of k
neighbors.

¢ Complexity: O(n-d) per query; O(n-d) memory.
<, Python:

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5) fit(X, y

I Pitfalls: Sensitive to irrelevant features & scaling.

£ Variations: Weighted KNN, KD-trees for speed.

7. Support Vector Machine (SVM)
@ When: Classification with clear margins, works well in high dimensions.

. ldea: Maximize margin; kernel trick allows nonlinear decision boundaries.
) Complexity: O(n?*-n3®) worst-case; faster with linear solvers.

<, Python:

from sklearn.svm import SVC
clf = SVC(kernel="rbf") fit(X, y

I Pitfalls: Expensive for very large datasets.

50 Machine Learning Algorithms — Cheatsheet

4 Variations: Linear SVM, v-SVM, One-class SVM.

8. Decision Tree
@ When: Interpretable models with non-linear interactions.
. ldea: Recursive partitioning of data by maximizing information gain.

<, Python:

from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier(max_depth=5) fit(X, y

I Pitfalls: High variance, prone to overfitting.

£ Variations: CART, ID3, C4.5, regression trees.

9. Random Forest
@ When: Strong baseline for tabular data.
. ldea: Ensemble of bootstrapped trees with feature bagging.

<, Python:

from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_estimators=100).fit(X, y

I Pitfalls: Large memory footprint.

£ Variations: Extremely Randomized Trees (ExtraTrees).

10. Gradient Boosting (GBM)
@ When: State-of-the-art for tabular predictive tasks.
. Idea: Sequentially add trees to correct previous residuals.

<, Python:

from sklearn.ensemble import GradientBoostingClassifier
gb = GradientBoostingClassifier().fit(X, y

I Pitfalls: Sensitive to hyperparameters.

4 Variations: XGBoost, LightGBM, CatBoost.

50 Machine Learning Algorithms — Cheatsheet

1. Extra Trees (Extremely Randomized Trees)
@ When: Faster and more randomized alternative to RF.
. ldea: Use random split thresholds.

<, Python:

from sklearn.ensemble import ExtraTreesClassifier
et = ExtraTreesClassifier().fit(X, y

I Pitfalls: Can increase bias.

4 Variations: Combine with bagging.

12. Naive Bayes
@ When: Text classification, spam filtering, NLP.
. ldea: Apply Bayes theorem assuming feature independence.

<, Python:

from sklearn.naive_bayes import MultinomialNB
nb = MultinomialNB().fit(X, y

I Pitfalls: Independence assumption rarely true.

£ Variations: GaussianNB, BernoulliNB.

13. Quadratic Discriminant Analysis (QDA)
@ When: Classes have different covariances.
. ldea: Estimate quadratic decision boundary.

<, Python:

from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
gda = QuadraticDiscriminantAnalysis().fit(X, y

I Pitfalls: Needs many samples.

4 Variations: Shrinkage QDA.

50 Machine Learning Algorithms — Cheatsheet

14. Linear Discriminant Analysis (LDA)
@ When: Classes separable linearly with shared covariance.
. ldea: Project features to maximize class separation.

<, Python:

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
Ida = LinearDiscriminantAnalysis().fit(X, y

I Pitfalls: Assumes Gaussian distribution.

4 Variations: Regularized LDA.

15. Perceptron
@ When: Online linear classification baseline.
. ldea: Adjust weights on mistakes.

<, Python:

from sklearn.linear_model import Perceptron
perc = Perceptron().fit(X, y

I Pitfalls: Only works if data is linearly separable.

£ Variations: Multi-layer perceptron (MLP).

16. Passive Aggressive Classifier
@ When: Large-scale online classification.
. ldea: Passive when correct, aggressive update when wrong.

<, Python:

from sklearn.linear_model import PassiveAggressiveClassifier
pa = PassiveAggressiveClassifier().fit(X, y

I Pitfalls: Requires careful regularization.

17. Huber Regressor

@ When: Regression robust to outliers.

50 Machine Learning Algorithms — Cheatsheet

. ldea: Huber loss behaves like MSE near O, MAE for outliers.

<, Python:

from sklearn.linear_model import HuberRegressor
huber = HuberRegressor().fit(X, y

I Pitfalls: Requires tuning epsilon.

18. SGD Classifier
@ When: Large datasets with linear models.
. ldea: Train using stochastic gradient descent.

<, Python:

from sklearn.linear_model import SGDClassifier
sgd = SGDClassifier(loss="hinge").fit(X, y

I Pitfalls: Sensitive to learning rate schedule.

19. Multi-layer Perceptron (MLP)
@ When: Small neural network for nonlinear classification.
. Idea: Fully connected layers + backpropagation.

<, Python:

from sklearn.neural_network import MLPClassifier
mlp = MLPClassifier(hidden_layer_sizes=(100,)).fit(X, y

I Pitfalls: Tends to overfit small datasets.

£ Variations: Deep feed-forward nets in PyTorch/Keras.

20. Logistic Regression (One-vs-Rest)
@ When: Multi-class classification with binary base learners.
. ldea: Train 1 classifier per class vs others.

<, Python:

50 Machine Learning Algorithms — Cheatsheet

LogisticRegression(multi_class="ovr").fit(X, y

I Pitfalls: May struggle with many classes.

4 Variations: One-vs-One classification.

B. < Unsupervised Learning (21-30)

21. K-Means Clustering

@ When: Partition unlabeled data into K clusters (e.g., customer
segmentation).

. ldea: Iteratively assign points to nearest centroid - update centroids until
stable.

) Complexity: O(n-k-d-it).
<, Python:

from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3, random_state=42) fit(X

I Pitfalls: Sensitive to initialization and outliers.

£ Variations: K-Means++, Mini-Batch KMeans.

22. Hierarchical Agglomerative Clustering
@ When: When hierarchy or dendrogram visualization is useful.
. Idea: Start with each point as its own cluster, merge iteratively.
> Complexity: O(n? log n).
<, Python:

from sklearn.cluster import AgglomerativeClustering
agg = AgglomerativeClustering(n_clusters=3, linkage="ward").fit(X

I Pitfalls: Expensive for very large datasets.

£ Variations: Single-link, complete-link, average-link.

50 Machine Learning Algorithms — Cheatsheet

23. DBSCAN (Density-Based Spatial Clustering)
@ When: Arbitrary-shaped clusters + noise detection.
. ldea: Core points expand clusters; noise points left unassigned.
) Complexity: O(n log n) with KD-tree; worst O(n?).
<, Python:

from sklearn.cluster import DBSCAN
db = DBSCAN(eps=0.5, min_samples=5).fit(X

I Pitfalls: Choosing eps and min_samples is tricky.

£ Variations: HDBSCAN for hierarchical density-based clustering.

24. Mean-Shift Clustering
@ When: Don’t know number of clusters beforehand.
. Idea: Slide window toward high-density region (modes).
> Complexity: O(n?).
<, Python:

from sklearn.cluster import MeanShift
ms = MeanShift().fit(X

I Pitfalls: Slow for large datasets.

£ Variations: Bandwidth selection critical.

25. Gaussian Mixture Models (GMMs)
@ When: Probabilistic soft clustering (e.g., speaker ID).
, Idea: Model as weighted sum of Gaussian distributions; EM for estimation.
) Complexity: O(n-k-d-it).
<, Python:

from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components=3).fit(X

50 Machine Learning Algorithms — Cheatsheet

I Pitfalls: Sensitive to initialization, assumes Gaussian shapes.

4 Variations: Bayesian Gaussian Mixtures (auto choose K).

26. PCA (Principal Component Analysis)

@ When: Dimensionality reduction, visualization, noise filtering.
. ldea: Project data to orthogonal axes of max variance.

> Complexity: O(min(n-d?, d3)).

<, Python:

from sklearn.decomposition import PCA
pca = PCA(n_components=2).fit_transform(X

I Pitfalls: Linear only, loses interpretability.

£ Variations: Sparse PCA, Incremental PCA.

27. Kernel PCA
@ When: Nonlinear dimensionality reduction.

. Idea: Use kernel trick to project into high-dimensional space before PCA.
> Complexity: O(n®) for kernel matrix.

<, Python:

from sklearn.decomposition import KernelPCA
kpca = KernelPCA(kernel="rbf", gamma=0.1) .fit_transform(X

I Pitfalls: Memory-heavy for large n.

£ Variations: Polynomial kernel, sigmoid kernel.

28. Independent Component Analysis (ICA)

@" When: Blind source separation (e.g., separating audio signals).
. Idea: Find statistically independent components.

) Complexity: O(n-dit).

<, Python:

50 Machine Learning Algorithms — Cheatsheet

from sklearn.decomposition import FastiCA
ica = FastICA(n_components=2).fit_transform(X

I Pitfalls: Requires whitening; sensitive to noise.

4 Variations: Robust ICA.

29. t-SNE (t-distributed Stochastic Neighbor Embedding)
@ When: Visualize high-dimensional data in 2D/3D.
. ldea: Preserve local neighborhood similarities by minimizing KL divergence.
> Complexity: O(n?).
<, Python:

from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, perplexity=30).fit_transform(X

I Pitfalls: Only for visualization; not scalable beyond ~10k points.

Variations: Barnes-Hut t-SNE, Multicore t-SNE.

30. UMAP (Uniform Manifold Approximation & Projection)
@ When: Faster scalable alternative to t-SNE.

. Idea: Graph-based manifold learning with local/global preservation.
(> Complexity: O(n log n).
<, Python:

import umap
embedding = umap.UMAP (n_neighbors=15, min_dist=0.1) fit_transform(X

I Pitfalls: Parameters (n_neighbors, min_dist) strongly affect result.

Variations: Supervised UMAP.

C. < Ensemble & Advanced (31-40)

31. AdaBoost (Adaptive Boosting)

50 Machine Learning Algorithms — Cheatsheet

n

@ When: Need a strong classifier from many weak learners.

. ldea: Iteratively reweight misclassified samples - train weak learners
(usually stumps) - combine weighted votes.

) Complexity: O(n-d-T), T = #learners.
<, Python:

from sklearn.ensemble import AdaBoostClassifier
ada = AdaBoostClassifier(n_estimators=50) fit(X, y

I Pitfalls: Sensitive to noisy data and outliers.

4 Variations: AdaBoostRegressor, SAMME (multi-class).

32. Gradient Boosting (GBM)

@ When: Stronger than AdaBoost; handles regression and classification.

. ldea: Sequentially fit models to residuals with gradient descent approach.

¢ Complexity: O(n-d-T).
<, Python:

from sklearn.ensemble import GradientBoostingClassifier
gb = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1) fit(X
y

I Pitfalls: Can overfit if learning rate too high.

£ Variations: Regularized GBM, stochastic GBM.

33. XGBoost (Extreme Gradient Boosting)
@ When: Large-scale datasets; Kaggle competitions.

. ldea: Optimized GBM with regularization, shrinkage, sparsity-aware
learning.

() Complexity: O(n-d-T) with optimizations.
<, Python:

import xgboost as xgb

50 Machine Learning Algorithms — Cheatsheet

12

model = xgb. XGBClassifier(n_estimators=200, max_depth=5) fit(X, y

I Pitfalls: Many hyperparameters - requires tuning.

£ Variations: GPU XGBoost, DART (dropout boosting).

34. LightGBM

@ When: Large datasets, high-dimensional features, categorical handling.
. Idea: Histogram-based leaf-wise growth (faster than depth-wise).

5 Complexity: O(n-log n).

<, Python:

import lightgbm as Igb
Igbm = Igb.LGBMClassifier(num_leaves=31) fit(X, y

I Pitfalls: Leaf-wise growth may overfit.

£ Variations: LightGBM GPU mode, categorical split support.

35. CatBoost

@ When: Many categorical features with minimal preprocessing.

. ldea: Ordered boosting to reduce overfitting; built-in categorical encoding.
> Complexity: O(n-d-T).
<, Python:

from catboost import CatBoostClassifier
cat = CatBoostClassifier(iterations=200, depth=6, verbose=0) fit(X, y

I Pitfalls: Training slower than LightGBM.

£ Variations: CatBoostRegressor.

36. Bagging (Bootstrap Aggregating)
@" When: Reduce variance of high-variance learners (e.g., decision trees).
. ldea: Train models on bootstrap samples - average/vote predictions.

) Complexity: O(n-d-T).

50 Machine Learning Algorithms — Cheatsheet

<, Python:

from sklearn.ensemble import BaggingClassifier
bag = BaggingClassifier(n_estimators=50).fit(X, y

I Pitfalls: Doesn't reduce bias.

£ Variations: Bagging with SVMs, regressors.

37. Stacking (Stacked Generalization)
@ When: Combine diverse models into a meta-model.
. ldea: Base models predict - meta-learner combines predictions.
() Complexity: O(T-n-d) + meta-model training.
<, Python:

from sklearn.ensemble import StackingClassifier
from sklearn.linear_model import LogisticRegression
estimators = [("rf", rf), ("gb", gb

stack = StackingClassifier(estimators=estimators, final_estimator=_LogisticR
egression

stack.fit(X, y

I Pitfalls: Risk of leakage if not using CV for meta-model.

£ Variations: Stacking regressors, deep stacking.

38. Voting Classifier
@ When: Need a simple ensemble of different models.

. ldea: Combine predictions via majority vote (hard) or average probs (soft).
(> Complexity: Low, just aggregates predictions.

<, Python:

from sklearn.ensemble import VotingClassifier

vote = VotingClassifier(estimators=[("rf", rf), ("svc", clf)], voting="soft") fit
X,y

I Pitfalls: Models must be reasonably calibrated.

50 Machine Learning Algorithms — Cheatsheet

4 Variations: Hard vs soft voting.

39. Bayesian Optimization Models
@& When: Hyperparameter tuning for expensive models.

. Idea: Use surrogate (Gaussian Process, TPE) to guide search of
hyperparameters.

(> Complexity: Depends on surrogate model.

<, Python:

import optuna
def objective(trial):
Ir = trial.suggest_float("Ir", 1e-4, 1e-1, log=True
n = trial.suggest_int("n_estimators", 50, 300
model = XGBClassifier(learning_rate=Ir, n_estimators=n
return cross_val_score(model, X, y).mean
study = optuna.create_study(direction="maximize"
study.optimize(objective, n_trials=50

I Pitfalls: Slower than grid/random for cheap models.

Variations: Tree Parzen Estimator (TPE), Hyperband.

40. Blending
@ When: Quick ensemble with a validation holdout.

. Idea: Train models - combine predictions via weighted average.
(> Complexity: Similar to stacking but simpler.

<, Python:
preds = 0.7*rf.predict_proba(X_val) + 0.3*gb.predict_proba(X_val

I Pitfalls: Needs careful holdout selection.

Variations: Linear blending, nonlinear blending.

D. && Neural Networks & Deep Learning (41-45)

50 Machine Learning Algorithms — Cheatsheet 15

41. Convolutional Neural Networks (CNNs)
@ When: Image classification, object detection, vision tasks.

. ldea: Convolution filters extract spatial features; pooling reduces
dimensions.

) Complexity: O(n-k-f?) where f = filter size.
<, Python:

from tensorflow.keras import Sequential, layers
model = Sequential
layers.Conv2D(32, (3,3), activation="relu", input_shape=(28,28,1
layers.MaxPooling2D(2,2
layers.Flatten
layers.Dense(10, activation="softmax"

I Pitfalls: Requires large data; prone to overfitting.

£ Variations: ResNet, VGG, EfficientNet, Inception.

42. Recurrent Neural Networks (RNNs)

@ When: Sequence data (text, time series, speech).
. ldea: Hidden state carries info through timesteps.
¢ Complexity: O(n-d-h) per sequence.

<, Python:

from tensorflow.keras import Sequential, layers
model = Sequential([layers.SimpleRNN(64), layers.Dense(1

I Pitfalls: Vanishing/exploding gradients.
£ Variations: BiRNNs, stacked RNNs.

43. Long Short-Term Memory (LSTM)
@ When: Sequences with long-term dependencies.
. ldea: Gated cells (input, forget, output) regulate memory.

> Complexity: O(n-d-h?).

50 Machine Learning Algorithms — Cheatsheet

<, Python:

from tensorflow keras import Sequential, layers
model = Sequential([layers.LSTM(128), layers.Dense(1

I Pitfalls: Computationally heavy.
4 Variations: Peephole LSTMs, bidirectional LSTMs.

44. Gated Recurrent Units (GRU)
@ When: Faster, lighter alternative to LSTM.
. ldea: Combines input & forget gate into update gate.

> Complexity: ~30% fewer parameters than LSTM.
<, Python:

from tensorflow.keras import Sequential, layers
model = Sequential([layers.GRU(128), layers.Dense(1

I Pitfalls: Sometimes less expressive than LSTM.

£ Variations: Bidirectional GRUs.

45. Transformers
@ When: NLP, audio, large-scale sequence modeling.
. ldea: Self-attention replaces recurrence - parallelizable.
> Complexity: O(n?-d) for attention.
<, Python:
from transformers import AutoModel, AutoTokenizer
tok = AutoTokenizer.from_pretrained("bert-base-uncased"

model = AutoModel.from_pretrained("bert-base-uncased"

I Pitfalls: High compute/memory cost.

£ Variations: BERT, GPT, T5, Vision Transformers.

E. %X Other Useful Algorithms (46-50)

50 Machine Learning Algorithms — Cheatsheet 17

46. K-Medoids
@ When: Robust clustering (less sensitive to outliers).
. ldea: Like K-Means but cluster centers = actual data points (medoids).
) Complexity: O(n?-k-it).
<, Python:

from sklearn_extra.cluster import KMedoids
kmed = KMedoids(n_clusters=3) fit(X

1 Pitfalls: Slower than K-Means.

£ Variations: Partitioning Around Medoids (PAM).

47. Self-Organizing Maps (SOMs)

@ When: Dimensionality reduction, visualization, topology-preserving.
. ldea: Neural-grid learns to represent data structure.

(> Complexity: O(n-d-epochs).

2, Python: (3rd-party libs e.g. MiniSom)

from minisom import MiniSom
som = MiniSom(7, 7, X.shape|1
som.train_random(X, 100

I Pitfalls: Outdated vs modern DR techniques.

£ Variations: Growing SOM.

48. Hidden Markov Models (HMMs)
@" When: Sequential data with latent states (speech, POS tagging).
. ldea: Transition probabilities between hidden states + emission probabilities.
) Complexity: O(n-s?), s = states.
<, Python:

50 Machine Learning Algorithms — Cheatsheet

from hmmlearn import hmm
model = hmm.GaussianHMM (n_components=3) fit(X

I Pitfalls: Assumes Markov property; limited flexibility.

4 Variations: Continuous HMM, factorial HMM.

49. Q-Learning (Reinforcement Learning)
@ When: Learn decision-making policies via rewards.

. ldea: Update Q-values iteratively with Bellman equation.
(> Complexity: O(states-actions).

<, Python:

import numpy as np

Q = np.zeros((n_states, n_actions

update rule

Q[s,al = Q[s,al + alpha*(r + gamma*np.max(Q[s_next]) - Q[s,a

I Pitfalls: Doesn't scale to large state spaces.

£ Variations: Deep Q-Networks (DQN).

50. Association Rule Learning (Apriori, Eclat)
@ When: Market basket analysis, discover frequent itemsets.
. ldea: Mine frequent patterns, derive rules with support/confidence.
(> Complexity: Exponential worst-case, optimized with pruning.
<, Python:
from mixtend.frequent_patterns import apriori, association_rules
freq = apriori(df, min_support=0.1, use_colnames=True

rules = association_rules(freq, metric="1lift", min_threshold=1.2

I Pitfalls: Generates too many rules; need thresholds.

£ Variations: FP-Growth algorithm.

50 Machine Learning Algorithms — Cheatsheet 19

Cheatsheet Extras

Model Selection Guide

Tabular data -> Random Forest, LightGBM, CatBoost
Text »> TF-IDF + Logistic / Transformers

Images - CNN / pretrained backbones

Time series > Feature engineering + LSTM/Transformers
Small data - Regularized linear, Naive Bayes

Large-scale -> XGBoost/LightGBM, SGD

Best Practices

Scale for distance-based models (KNN, SVM).
Handle imbalance with class weights / sampling.
Use cross-validation (stratified/group).
Automate pipelines (sklearn.Pipeline).

Monitor drift & feature importance in production.

50 Machine Learning Algorithms — Cheatsheet

20

