
🧬
50 Machine Learning
Algorithms — Cheatsheet

Blueprints of Intelligence — 50 ML Algorithms decoded.

💡 How to Use?
Each pattern includes:

When to use (practical scenario)

Core idea (intuition)

Complexity (time/space, rough)

Python hint (minimal example)

Pitfalls / Variations

A. 🎯 Supervised Learning (1–20)

1. Linear Regression
🎯 When: Predict continuous numeric values from features.

💡 Idea: Fit line/plane by minimizing mean squared error.

⏱️ Complexity: O(n·d²) closed form; O(n·d·it) gradient descent.

🐍 Python:

from sklearn.linear_model import LinearRegression
model = LinearRegression().fit(X, y)

⚠️ Pitfalls: Sensitive to multicollinearity & outliers.

🔀 Variations: Weighted regression, polynomial regression.

50 Machine Learning Algorithms — Cheatsheet 1

2. Logistic Regression
🎯 When: Binary classification (extendable to multi-class).

💡 Idea: Apply sigmoid to linear score; optimize log-likelihood.

⏱️ Complexity: O(n·d·it).

🐍 Python:

from sklearn.linear_model import LogisticRegression
clf = LogisticRegression().fit(X, y)

⚠️ Pitfalls: Assumes linear decision boundary.

🔀 Variations: Softmax regression for multi-class.

3. Ridge Regression (L2)
🎯 When: Regression with multicollinearity; need regularization.

💡 Idea: Penalize large coefficients with L2 norm.

🐍 Python:

from sklearn.linear_model import Ridge
model = Ridge(alpha=1.0).fit(X, y)

⚠️ Pitfalls: Doesn’t perform feature selection.

🔀 Variations: Logistic ridge regression.

4. Lasso Regression (L1)
🎯 When: Regression with feature selection.

💡 Idea: L1 penalty shrinks some coefficients to zero.

🐍 Python:

from sklearn.linear_model import Lasso
model = Lasso(alpha=0.1).fit(X, y)

⚠️ Pitfalls: Unstable when features are correlated.

🔀 Variations: Sparse models in high dimensions.

50 Machine Learning Algorithms — Cheatsheet 2

5. Elastic Net
🎯 When: Need both shrinkage and feature selection.

💡 Idea: Weighted L1 + L2 penalties.

🐍 Python:

from sklearn.linear_model import ElasticNet
model = ElasticNet(l1_ratio=0.5).fit(X, y)

⚠️ Pitfalls: Extra hyperparameter (l1_ratio).

🔀 Variations: LARS solver for speed.

6. K-Nearest Neighbors (KNN)
🎯 When: Simple classification/regression baseline.

💡 Idea: Predict by majority (classification) or mean (regression) of k
neighbors.

⏱️ Complexity: O(n·d) per query; O(n·d) memory.

🐍 Python:

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5).fit(X, y)

⚠️ Pitfalls: Sensitive to irrelevant features & scaling.

🔀 Variations: Weighted KNN, KD-trees for speed.

7. Support Vector Machine (SVM)
🎯 When: Classification with clear margins, works well in high dimensions.

💡 Idea: Maximize margin; kernel trick allows nonlinear decision boundaries.

⏱️ Complexity: O(n²–n³) worst-case; faster with linear solvers.

🐍 Python:

from sklearn.svm import SVC
clf = SVC(kernel="rbf").fit(X, y)

⚠️ Pitfalls: Expensive for very large datasets.

50 Machine Learning Algorithms — Cheatsheet 3

🔀 Variations: Linear SVM, ν-SVM, One-class SVM.

8. Decision Tree
🎯 When: Interpretable models with non-linear interactions.

💡 Idea: Recursive partitioning of data by maximizing information gain.

🐍 Python:

from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier(max_depth=5).fit(X, y)

⚠️ Pitfalls: High variance, prone to overfitting.

🔀 Variations: CART, ID3, C4.5, regression trees.

9. Random Forest
🎯 When: Strong baseline for tabular data.

💡 Idea: Ensemble of bootstrapped trees with feature bagging.

🐍 Python:

from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_estimators=100).fit(X, y)

⚠️ Pitfalls: Large memory footprint.

🔀 Variations: Extremely Randomized Trees (ExtraTrees).

10. Gradient Boosting (GBM)
🎯 When: State-of-the-art for tabular predictive tasks.

💡 Idea: Sequentially add trees to correct previous residuals.

🐍 Python:

from sklearn.ensemble import GradientBoostingClassifier
gb = GradientBoostingClassifier().fit(X, y)

⚠️ Pitfalls: Sensitive to hyperparameters.

🔀 Variations: XGBoost, LightGBM, CatBoost.

50 Machine Learning Algorithms — Cheatsheet 4

11. Extra Trees (Extremely Randomized Trees)
🎯 When: Faster and more randomized alternative to RF.

💡 Idea: Use random split thresholds.

🐍 Python:

from sklearn.ensemble import ExtraTreesClassifier
et = ExtraTreesClassifier().fit(X, y)

⚠️ Pitfalls: Can increase bias.

🔀 Variations: Combine with bagging.

12. Naive Bayes
🎯 When: Text classification, spam filtering, NLP.

💡 Idea: Apply Bayes theorem assuming feature independence.

🐍 Python:

from sklearn.naive_bayes import MultinomialNB
nb = MultinomialNB().fit(X, y)

⚠️ Pitfalls: Independence assumption rarely true.

🔀 Variations: GaussianNB, BernoulliNB.

13. Quadratic Discriminant Analysis (QDA)
🎯 When: Classes have different covariances.

💡 Idea: Estimate quadratic decision boundary.

🐍 Python:

from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
qda = QuadraticDiscriminantAnalysis().fit(X, y)

⚠️ Pitfalls: Needs many samples.

🔀 Variations: Shrinkage QDA.

50 Machine Learning Algorithms — Cheatsheet 5

14. Linear Discriminant Analysis (LDA)
🎯 When: Classes separable linearly with shared covariance.

💡 Idea: Project features to maximize class separation.

🐍 Python:

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis().fit(X, y)

⚠️ Pitfalls: Assumes Gaussian distribution.

🔀 Variations: Regularized LDA.

15. Perceptron
🎯 When: Online linear classification baseline.

💡 Idea: Adjust weights on mistakes.

🐍 Python:

from sklearn.linear_model import Perceptron
perc = Perceptron().fit(X, y)

⚠️ Pitfalls: Only works if data is linearly separable.

🔀 Variations: Multi-layer perceptron (MLP).

16. Passive Aggressive Classifier
🎯 When: Large-scale online classification.

💡 Idea: Passive when correct, aggressive update when wrong.

🐍 Python:

from sklearn.linear_model import PassiveAggressiveClassifier
pa = PassiveAggressiveClassifier().fit(X, y)

⚠️ Pitfalls: Requires careful regularization.

17. Huber Regressor
🎯 When: Regression robust to outliers.

50 Machine Learning Algorithms — Cheatsheet 6

💡 Idea: Huber loss behaves like MSE near 0, MAE for outliers.

🐍 Python:

from sklearn.linear_model import HuberRegressor
huber = HuberRegressor().fit(X, y)

⚠️ Pitfalls: Requires tuning epsilon.

18. SGD Classifier
🎯 When: Large datasets with linear models.

💡 Idea: Train using stochastic gradient descent.

🐍 Python:

from sklearn.linear_model import SGDClassifier
sgd = SGDClassifier(loss="hinge").fit(X, y)

⚠️ Pitfalls: Sensitive to learning rate schedule.

19. Multi-layer Perceptron (MLP)
🎯 When: Small neural network for nonlinear classification.

💡 Idea: Fully connected layers + backpropagation.

🐍 Python:

from sklearn.neural_network import MLPClassifier
mlp = MLPClassifier(hidden_layer_sizes=(100,)).fit(X, y)

⚠️ Pitfalls: Tends to overfit small datasets.

🔀 Variations: Deep feed-forward nets in PyTorch/Keras.

20. Logistic Regression (One-vs-Rest)
🎯 When: Multi-class classification with binary base learners.

💡 Idea: Train 1 classifier per class vs others.

🐍 Python:

50 Machine Learning Algorithms — Cheatsheet 7

LogisticRegression(multi_class="ovr").fit(X, y)

⚠️ Pitfalls: May struggle with many classes.

🔀 Variations: One-vs-One classification.

B. 🧩 Unsupervised Learning (21–30)

21. K-Means Clustering
🎯 When: Partition unlabeled data into K clusters (e.g., customer
segmentation).

💡 Idea: Iteratively assign points to nearest centroid → update centroids until
stable.

⏱️ Complexity: O(n·k·d·it).

🐍 Python:

from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3, random_state=42).fit(X)

⚠️ Pitfalls: Sensitive to initialization and outliers.

🔀 Variations: K-Means++, Mini-Batch KMeans.

22. Hierarchical Agglomerative Clustering
🎯 When: When hierarchy or dendrogram visualization is useful.

💡 Idea: Start with each point as its own cluster, merge iteratively.

⏱️ Complexity: O(n² log n).

🐍 Python:

from sklearn.cluster import AgglomerativeClustering
agg = AgglomerativeClustering(n_clusters=3, linkage="ward").fit(X)

⚠️ Pitfalls: Expensive for very large datasets.

🔀 Variations: Single-link, complete-link, average-link.

50 Machine Learning Algorithms — Cheatsheet 8

23. DBSCAN (Density-Based Spatial Clustering)
🎯 When: Arbitrary-shaped clusters + noise detection.

💡 Idea: Core points expand clusters; noise points left unassigned.

⏱️ Complexity: O(n log n) with KD-tree; worst O(n²).

🐍 Python:

from sklearn.cluster import DBSCAN
db = DBSCAN(eps=0.5, min_samples=5).fit(X)

⚠️ Pitfalls: Choosing eps and min_samples is tricky.

🔀 Variations: HDBSCAN for hierarchical density-based clustering.

24. Mean-Shift Clustering
🎯 When: Don’t know number of clusters beforehand.

💡 Idea: Slide window toward high-density region (modes).

⏱️ Complexity: O(n²).

🐍 Python:

from sklearn.cluster import MeanShift
ms = MeanShift().fit(X)

⚠️ Pitfalls: Slow for large datasets.

🔀 Variations: Bandwidth selection critical.

25. Gaussian Mixture Models (GMMs)
🎯 When: Probabilistic soft clustering (e.g., speaker ID).

💡 Idea: Model as weighted sum of Gaussian distributions; EM for estimation.

⏱️ Complexity: O(n·k·d·it).

🐍 Python:

from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components=3).fit(X)

50 Machine Learning Algorithms — Cheatsheet 9

⚠️ Pitfalls: Sensitive to initialization, assumes Gaussian shapes.

🔀 Variations: Bayesian Gaussian Mixtures (auto choose K).

26. PCA (Principal Component Analysis)
🎯 When: Dimensionality reduction, visualization, noise filtering.

💡 Idea: Project data to orthogonal axes of max variance.

⏱️ Complexity: O(min(n·d², d³)).

🐍 Python:

from sklearn.decomposition import PCA
pca = PCA(n_components=2).fit_transform(X)

⚠️ Pitfalls: Linear only, loses interpretability.

🔀 Variations: Sparse PCA, Incremental PCA.

27. Kernel PCA
🎯 When: Nonlinear dimensionality reduction.

💡 Idea: Use kernel trick to project into high-dimensional space before PCA.

⏱️ Complexity: O(n³) for kernel matrix.

🐍 Python:

from sklearn.decomposition import KernelPCA
kpca = KernelPCA(kernel="rbf", gamma=0.1).fit_transform(X)

⚠️ Pitfalls: Memory-heavy for large n.

🔀 Variations: Polynomial kernel, sigmoid kernel.

28. Independent Component Analysis (ICA)
🎯 When: Blind source separation (e.g., separating audio signals).

💡 Idea: Find statistically independent components.

⏱️ Complexity: O(n·d²·it).

🐍 Python:

50 Machine Learning Algorithms — Cheatsheet 10

from sklearn.decomposition import FastICA
ica = FastICA(n_components=2).fit_transform(X)

⚠️ Pitfalls: Requires whitening; sensitive to noise.

🔀 Variations: Robust ICA.

29. t-SNE (t-distributed Stochastic Neighbor Embedding)
🎯 When: Visualize high-dimensional data in 2D/3D.

💡 Idea: Preserve local neighborhood similarities by minimizing KL divergence.

⏱️ Complexity: O(n²).

🐍 Python:

from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, perplexity=30).fit_transform(X)

⚠️ Pitfalls: Only for visualization; not scalable beyond ~10k points.

🔀 Variations: Barnes-Hut t-SNE, Multicore t-SNE.

30. UMAP (Uniform Manifold Approximation & Projection)
🎯 When: Faster scalable alternative to t-SNE.

💡 Idea: Graph-based manifold learning with local/global preservation.

⏱️ Complexity: O(n log n).

🐍 Python:

import umap
embedding = umap.UMAP(n_neighbors=15, min_dist=0.1).fit_transform(X)

⚠️ Pitfalls: Parameters (n_neighbors, min_dist) strongly affect result.

🔀 Variations: Supervised UMAP.

C. 🤝 Ensemble & Advanced (31–40)

31. AdaBoost (Adaptive Boosting)

50 Machine Learning Algorithms — Cheatsheet 11

🎯 When: Need a strong classifier from many weak learners.

💡 Idea: Iteratively reweight misclassified samples → train weak learners
(usually stumps) → combine weighted votes.

⏱️ Complexity: O(n·d·T), T = #learners.

🐍 Python:

from sklearn.ensemble import AdaBoostClassifier
ada = AdaBoostClassifier(n_estimators=50).fit(X, y)

⚠️ Pitfalls: Sensitive to noisy data and outliers.

🔀 Variations: AdaBoostRegressor, SAMME (multi-class).

32. Gradient Boosting (GBM)
🎯 When: Stronger than AdaBoost; handles regression and classification.

💡 Idea: Sequentially fit models to residuals with gradient descent approach.

⏱️ Complexity: O(n·d·T).

🐍 Python:

from sklearn.ensemble import GradientBoostingClassifier
gb = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1).fit(X,
y)

⚠️ Pitfalls: Can overfit if learning rate too high.

🔀 Variations: Regularized GBM, stochastic GBM.

33. XGBoost (Extreme Gradient Boosting)
🎯 When: Large-scale datasets; Kaggle competitions.

💡 Idea: Optimized GBM with regularization, shrinkage, sparsity-aware
learning.

⏱️ Complexity: O(n·d·T) with optimizations.

🐍 Python:

import xgboost as xgb

50 Machine Learning Algorithms — Cheatsheet 12

model = xgb.XGBClassifier(n_estimators=200, max_depth=5).fit(X, y)

⚠️ Pitfalls: Many hyperparameters → requires tuning.

🔀 Variations: GPU XGBoost, DART (dropout boosting).

34. LightGBM
🎯 When: Large datasets, high-dimensional features, categorical handling.

💡 Idea: Histogram-based leaf-wise growth (faster than depth-wise).

⏱️ Complexity: O(n·log n).

🐍 Python:

import lightgbm as lgb
lgbm = lgb.LGBMClassifier(num_leaves=31).fit(X, y)

⚠️ Pitfalls: Leaf-wise growth may overfit.

🔀 Variations: LightGBM GPU mode, categorical split support.

35. CatBoost
🎯 When: Many categorical features with minimal preprocessing.

💡 Idea: Ordered boosting to reduce overfitting; built-in categorical encoding.

⏱️ Complexity: O(n·d·T).

🐍 Python:

from catboost import CatBoostClassifier
cat = CatBoostClassifier(iterations=200, depth=6, verbose=0).fit(X, y)

⚠️ Pitfalls: Training slower than LightGBM.

🔀 Variations: CatBoostRegressor.

36. Bagging (Bootstrap Aggregating)
🎯 When: Reduce variance of high-variance learners (e.g., decision trees).

💡 Idea: Train models on bootstrap samples → average/vote predictions.

⏱️ Complexity: O(n·d·T).

50 Machine Learning Algorithms — Cheatsheet 13

🐍 Python:

from sklearn.ensemble import BaggingClassifier
bag = BaggingClassifier(n_estimators=50).fit(X, y)

⚠️ Pitfalls: Doesn’t reduce bias.

🔀 Variations: Bagging with SVMs, regressors.

37. Stacking (Stacked Generalization)
🎯 When: Combine diverse models into a meta-model.

💡 Idea: Base models predict → meta-learner combines predictions.

⏱️ Complexity: O(T·n·d) + meta-model training.

🐍 Python:

from sklearn.ensemble import StackingClassifier
from sklearn.linear_model import LogisticRegression
estimators = [("rf", rf), ("gb", gb)]
stack = StackingClassifier(estimators=estimators, final_estimator=LogisticR
egression())
stack.fit(X, y)

⚠️ Pitfalls: Risk of leakage if not using CV for meta-model.

🔀 Variations: Stacking regressors, deep stacking.

38. Voting Classifier
🎯 When: Need a simple ensemble of different models.

💡 Idea: Combine predictions via majority vote (hard) or average probs (soft).

⏱️ Complexity: Low, just aggregates predictions.

🐍 Python:

from sklearn.ensemble import VotingClassifier
vote = VotingClassifier(estimators=[("rf", rf), ("svc", clf)], voting="soft").fit
(X, y)

⚠️ Pitfalls: Models must be reasonably calibrated.

50 Machine Learning Algorithms — Cheatsheet 14

🔀 Variations: Hard vs soft voting.

39. Bayesian Optimization Models
🎯 When: Hyperparameter tuning for expensive models.

💡 Idea: Use surrogate (Gaussian Process, TPE) to guide search of
hyperparameters.

⏱️ Complexity: Depends on surrogate model.

🐍 Python:

import optuna
def objective(trial):
 lr = trial.suggest_float("lr", 1e-4, 1e-1, log=True)
 n = trial.suggest_int("n_estimators", 50, 300)
 model = XGBClassifier(learning_rate=lr, n_estimators=n)
 return cross_val_score(model, X, y).mean()
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=50)

⚠️ Pitfalls: Slower than grid/random for cheap models.

🔀 Variations: Tree Parzen Estimator (TPE), Hyperband.

40. Blending
🎯 When: Quick ensemble with a validation holdout.

💡 Idea: Train models → combine predictions via weighted average.

⏱️ Complexity: Similar to stacking but simpler.

🐍 Python:

preds = 0.7*rf.predict_proba(X_val) + 0.3*gb.predict_proba(X_val)

⚠️ Pitfalls: Needs careful holdout selection.

🔀 Variations: Linear blending, nonlinear blending.

D. 🧠 Neural Networks & Deep Learning (41–45)

50 Machine Learning Algorithms — Cheatsheet 15

41. Convolutional Neural Networks (CNNs)
🎯 When: Image classification, object detection, vision tasks.

💡 Idea: Convolution filters extract spatial features; pooling reduces
dimensions.

⏱️ Complexity: O(n·k·f²) where f = filter size.

🐍 Python:

from tensorflow.keras import Sequential, layers
model = Sequential([
 layers.Conv2D(32, (3,3), activation="relu", input_shape=(28,28,1)),
 layers.MaxPooling2D(2,2),
 layers.Flatten(),
 layers.Dense(10, activation="softmax")
])

⚠️ Pitfalls: Requires large data; prone to overfitting.

🔀 Variations: ResNet, VGG, EfficientNet, Inception.

42. Recurrent Neural Networks (RNNs)
🎯 When: Sequence data (text, time series, speech).

💡 Idea: Hidden state carries info through timesteps.

⏱️ Complexity: O(n·d·h) per sequence.

🐍 Python:

from tensorflow.keras import Sequential, layers
model = Sequential([layers.SimpleRNN(64), layers.Dense(1)])

⚠️ Pitfalls: Vanishing/exploding gradients.

🔀 Variations: BiRNNs, stacked RNNs.

43. Long Short-Term Memory (LSTM)
🎯 When: Sequences with long-term dependencies.

💡 Idea: Gated cells (input, forget, output) regulate memory.

⏱️ Complexity: O(n·d·h²).

50 Machine Learning Algorithms — Cheatsheet 16

🐍 Python:

from tensorflow.keras import Sequential, layers
model = Sequential([layers.LSTM(128), layers.Dense(1)])

⚠️ Pitfalls: Computationally heavy.

🔀 Variations: Peephole LSTMs, bidirectional LSTMs.

44. Gated Recurrent Units (GRU)
🎯 When: Faster, lighter alternative to LSTM.

💡 Idea: Combines input & forget gate into update gate.

⏱️ Complexity: ~30% fewer parameters than LSTM.

🐍 Python:

from tensorflow.keras import Sequential, layers
model = Sequential([layers.GRU(128), layers.Dense(1)])

⚠️ Pitfalls: Sometimes less expressive than LSTM.

🔀 Variations: Bidirectional GRUs.

45. Transformers
🎯 When: NLP, audio, large-scale sequence modeling.

💡 Idea: Self-attention replaces recurrence → parallelizable.

⏱️ Complexity: O(n²·d) for attention.

🐍 Python:

from transformers import AutoModel, AutoTokenizer
tok = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModel.from_pretrained("bert-base-uncased")

⚠️ Pitfalls: High compute/memory cost.

🔀 Variations: BERT, GPT, T5, Vision Transformers.

E. 🛠️ Other Useful Algorithms (46–50)

50 Machine Learning Algorithms — Cheatsheet 17

46. K-Medoids
🎯 When: Robust clustering (less sensitive to outliers).

💡 Idea: Like K-Means but cluster centers = actual data points (medoids).

⏱️ Complexity: O(n²·k·it).

🐍 Python:

from sklearn_extra.cluster import KMedoids
kmed = KMedoids(n_clusters=3).fit(X)

⚠️ Pitfalls: Slower than K-Means.

🔀 Variations: Partitioning Around Medoids (PAM).

47. Self-Organizing Maps (SOMs)
🎯 When: Dimensionality reduction, visualization, topology-preserving.

💡 Idea: Neural-grid learns to represent data structure.

⏱️ Complexity: O(n·d·epochs).

🐍 Python: (3rd-party libs e.g. MiniSom)

from minisom import MiniSom
som = MiniSom(7, 7, X.shape[1])
som.train_random(X, 100)

⚠️ Pitfalls: Outdated vs modern DR techniques.

🔀 Variations: Growing SOM.

48. Hidden Markov Models (HMMs)
🎯 When: Sequential data with latent states (speech, POS tagging).

💡 Idea: Transition probabilities between hidden states + emission probabilities.

⏱️ Complexity: O(n·s²), s = states.

🐍 Python:

50 Machine Learning Algorithms — Cheatsheet 18

from hmmlearn import hmm
model = hmm.GaussianHMM(n_components=3).fit(X)

⚠️ Pitfalls: Assumes Markov property; limited flexibility.

🔀 Variations: Continuous HMM, factorial HMM.

49. Q-Learning (Reinforcement Learning)
🎯 When: Learn decision-making policies via rewards.

💡 Idea: Update Q-values iteratively with Bellman equation.

⏱️ Complexity: O(states·actions).

🐍 Python:

import numpy as np
Q = np.zeros((n_states, n_actions))
update rule
Q[s,a] = Q[s,a] + alpha*(r + gamma*np.max(Q[s_next]) - Q[s,a])

⚠️ Pitfalls: Doesn’t scale to large state spaces.

🔀 Variations: Deep Q-Networks (DQN).

50. Association Rule Learning (Apriori, Eclat)
🎯 When: Market basket analysis, discover frequent itemsets.

💡 Idea: Mine frequent patterns, derive rules with support/confidence.

⏱️ Complexity: Exponential worst-case, optimized with pruning.

🐍 Python:

from mlxtend.frequent_patterns import apriori, association_rules
freq = apriori(df, min_support=0.1, use_colnames=True)
rules = association_rules(freq, metric="lift", min_threshold=1.2)

⚠️ Pitfalls: Generates too many rules; need thresholds.

🔀 Variations: FP-Growth algorithm.

50 Machine Learning Algorithms — Cheatsheet 19

⚡ Cheatsheet Extras
Model Selection Guide

Tabular data → Random Forest, LightGBM, CatBoost

Text → TF-IDF + Logistic / Transformers

Images → CNN / pretrained backbones

Time series → Feature engineering + LSTM/Transformers

Small data → Regularized linear, Naive Bayes

Large-scale → XGBoost/LightGBM, SGD

Best Practices

Scale for distance-based models (KNN, SVM).

Handle imbalance with class weights / sampling.

Use cross-validation (stratified/group).

Automate pipelines (sklearn.Pipeline).

Monitor drift & feature importance in production.

50 Machine Learning Algorithms — Cheatsheet 20

