Optimization Algorithms in
Machine Learning

I From Gradient Descent to Adam — the science of optimization, decoded.

@ Overview

Optimization algorithms are at the heart of Machine Learning. They determine
how a model's parameters are updated to minimize loss. This resource covers
Gradient Descent and its key variants — Momentum, RMSProp, Adam — with
formulas, explanations, and examples.

@ Why Optimization Matters

Models are defined by parameters (weights & biases).

Training = minimizing a loss function using optimization.

Poor optimization - slow convergence or getting stuck in bad minima.

Good optimization - faster learning, stable training, better accuracy.

10 1. Gradient Descent

Core Idea: Move parameters in the direction opposite to the gradient of the
loss.

Formula:
0=0—n-VyJ(0)
o 0: parameters
e 7:learning rate

 J(0): loss function
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Types:
o Batch Gradient Descent - full dataset each step (stable, but slow).
» Stochastic Gradient Descent (SGD) - one sample at a time (fast, noisy).
e Mini-batch Gradient Descent - balance of both (most common).
Pitfalls:
e Choosing learning rate is tricky. Too high = divergence, too low - slow.

o Can get stuck in local minima or plateaus.

10 2. Gradient Descent with Momentum

Core Idea: Add velocity to updates, like rolling a ball downhill — smooths
oscillations and speeds up convergence.

Formulas:
vy = By +n-VeJ(0)
\theta = \theta - v_t
o [3: momentum term (0.9 typical).
o Keeps moving in the same direction if gradients are consistent.
Pros: Faster convergence, less zig-zag in ravines.

Cons: Can overshoot if momentum too high.

{© 3. RMSProp (Root Mean Square Propagation)

Core Idea: Adjust learning rate per parameter by dividing by a moving average
of squared gradients.

Formulas:
st = Bsi-1+ (1= B)(VeJ(0))

0=0— 21— VyJ(0)

» Helps avoid vanishing/exploding steps.
e Good for recurrent networks and non-stationary problems.
Pros: Adaptive step sizes, stabilizes learning.

Cons: May still be unstable without momentum.
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10 4. Adam (Adaptive Moment Estimation)

Core Idea: Combines Momentum + RMSProp. Keeps track of both first
moment (mean) and second moment (variance) of gradients.

Formulas:
my = Bimy_1 + (1 — B1)VeJ ()

vy = Bovy_1 + (1 — B2)(VeJ(6))?

_ 0 _ nmy
=0 Vi +e

e Ty, Uy bias-corrected estimates.
o Default params: 81 = 0.9, 85 = 0.999, n = 0.001.

Pros: Works well out-of-the-box, robust for many ML problems.

Cons: Sometimes overfits or generalizes worse than SGD in some cases.

Il Conceptual Graphs

Momentum: RMSProp: steps
Zig-zag path down a path like a rolling directions, adaptive steps, often
overshoot minimum

#~ Quick Comparison

Algorithm Key Idea Pros Cons

Gradient Undate with dient onl Simpl idel q Slow, sensitive to

ate wi radient on imple, widely use
Descent P 9 y Pie: y
. Faster, less
Momentum Add velocity term I Can overshoot
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Algorithm Key Idea

Scale learning rate by

RMSProp )
variance
Adam Momentum + RMSProp
4 Takeaway

Start with Adam as baseline.
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Pros

Stable, adaptive

Fast, default choice

Use RMSProp for RNNs or noisy problems.

Cons
May need tuning

Sometimes
overfits

For large-scale, try SGD + Momentum (often better generalization).

Always tune learning rate — the single most important hyperparameter.



