
🧬
Optimization Algorithms in 
Machine Learning

From Gradient Descent to Adam — the science of optimization, decoded.

📘 Overview
Optimization algorithms are at the heart of Machine Learning. They determine 
how a model’s parameters are updated to minimize loss. This resource covers 
Gradient Descent and its key variants — Momentum, RMSProp, Adam — with 
formulas, explanations, and examples.

🎯 Why Optimization Matters
Models are defined by parameters (weights & biases).

Training = minimizing a loss function using optimization.

Poor optimization → slow convergence or getting stuck in bad minima.

Good optimization → faster learning, stable training, better accuracy.

⚙️ 1. Gradient Descent
Core Idea: Move parameters in the direction opposite to the gradient of the 
loss.

Formula:

﻿

﻿: parameters

﻿: learning rate

﻿: loss function

θ = θ − η ⋅ ∇ ​J(θ)θ

θ

η

J(θ)

Optimization Algorithms in Machine Learning 1



Types:

Batch Gradient Descent → full dataset each step (stable, but slow).

Stochastic Gradient Descent (SGD) → one sample at a time (fast, noisy).

Mini-batch Gradient Descent → balance of both (most common).

Pitfalls:

Choosing learning rate is tricky. Too high → divergence, too low → slow.

Can get stuck in local minima or plateaus.

⚙️ 2. Gradient Descent with Momentum
Core Idea: Add velocity to updates, like rolling a ball downhill — smooths 
oscillations and speeds up convergence.

Formulas:

﻿

\theta = \theta - v_t

﻿: momentum term (0.9 typical).

Keeps moving in the same direction if gradients are consistent.

Pros: Faster convergence, less zig-zag in ravines.

Cons: Can overshoot if momentum too high.

⚙️ 3. RMSProp (Root Mean Square Propagation)
Core Idea: Adjust learning rate per parameter by dividing by a moving average 
of squared gradients.

Formulas:

﻿

﻿

Helps avoid vanishing/exploding steps.

Good for recurrent networks and non-stationary problems.

Pros: Adaptive step sizes, stabilizes learning.

Cons: May still be unstable without momentum.

v ​ =t βv ​ +t−1 η ⋅ ∇ ​J(θ)θ

β

s ​ =t βs +t−1 (1 − β)(∇ ​J(θ))θ
2

θ = θ − ​ ⋅
​s ​+ϵt

η ∇ ​J(θ)θ

Optimization Algorithms in Machine Learning 2



⚙️ 4. Adam (Adaptive Moment Estimation)
Core Idea: Combines Momentum + RMSProp. Keeps track of both first 
moment (mean) and second moment (variance) of gradients.

Formulas:

﻿

﻿

﻿, ﻿: bias-corrected estimates.

Default params: ﻿, ﻿, ﻿.

Pros: Works well out-of-the-box, robust for many ML problems.

Cons: Sometimes overfits or generalizes worse than SGD in some cases.

📊 Conceptual Graphs

🔑 Quick Comparison
Algorithm Key Idea Pros Cons

Gradient
Descent Update with gradient only Simple, widely used

Slow, sensitive to
η

Momentum Add velocity term
Faster, less
oscillation Can overshoot

m ​ =t β ​m ​ +1 t−1 (1 − β ​)∇ ​J(θ)1 θ

v ​ =t β ​v ​ +2 t−1 (1 − β ​)(∇ ​J(θ))2 θ
2

θ = θ − ​

​+ϵ​v ​t̂

η⋅ ​m ​t^

​m ​t^ ​v ​t̂

β ​ =1 0.9 β ​ =2 0.999 η = 0.001

Gradient Descent: 
zig-zag path down a 

valley

Momentum: 
smoother, curved 
path like a rolling 

ball

RMSProp: steps 
adapt in x/y 
directions, 
preventing 
overshoot

Adam: balanced 
adaptive steps, often 

shortest path to 
minimum

Optimization Algorithms in Machine Learning 3



Algorithm Key Idea Pros Cons

RMSProp Scale learning rate by
variance

Stable, adaptive May need tuning

Adam Momentum + RMSProp Fast, default choice Sometimes
overfits

🚀 Takeaway
Start with Adam as baseline.

For large-scale, try SGD + Momentum (often better generalization).

Use RMSProp for RNNs or noisy problems.

Always tune learning rate — the single most important hyperparameter.

Optimization Algorithms in Machine Learning 4


